您好,欢迎进入其麦艾润(西安)生命科学有限公司官网!

全国咨询热线

029-63350399

其麦艾润

2019首个诺贝尔奖揭晓!氧气如何决定我们的命运?揭秘血与氧关系,抗击肿瘤和癌症

发布时间:2020-02-23浏览次数:308

导读:北京时间10月7日下午5点30分,2019年诺贝尔生理学或医学奖公布,获得者有三位,他们分别是来自哈佛医学院达纳-法伯癌症研究所的威廉·凯林( William G. Kaelin, Jr.),牛津大学和弗朗西斯·克里克研究所的彼得·拉特克利夫( Peter J. Ratcliffe) 以及美国约翰霍普金斯大学医学院的格雷格·塞门扎(Gregg L. Semenza),以表彰他们发现了细胞如何感知以及对氧气供应的适应性。他们将共同分享900万克朗(约合人民币650万元)的奖金。

 

       来   源丨21世纪经济报道(ID:jjbd21)综合自科普中央厨房、科技日报、量子位(ID:QbitAI)、知道分子(ID:The-Intellectual)、丁香园、中纪委网站

    0675edb7bb9debe7ccc9a44cf81a8fb3.jpg

 

获奖者:

 

Gregg L. Semenz(美国约翰霍普金斯大学)

Sir Peter J. Ratcliffe(英国牛津大学)

William G. Kaelin,Jr.(美国哈佛大学)

 

获奖原因:


他们发现了细胞如何感知和适应氧气供应。

诺贝尔奖官方说,今年的诺贝尔奖获得者揭示了生命中最重要的适应过程之一的机制。

 

他们为我们了解氧水平如何影响细胞代谢和生理功能奠定了基础。而且他们的发现也为抗击贫血、癌症和许多其他疾病的新策略铺平了道路。

 

 

治疗癌症从此有了新方案?

 

       我们知道,氧气对于人类动物的重要性,天天呼吸,却常不经意间忽略它的存在。几个世纪前,人类就已经了解氧气的基本属性,但对细胞如何适应氧气变化并不清楚。

 

       动物需要氧气才能将食物转化为有用的能量。多年来人们已经了解了氧气的重要性,但细胞如何适应氧气水平的变化却一直不为人知。

 

        小威廉·凯林(William G. Kaelin Jr.),彼得·J·拉特克利夫爵士(Sir Peter J. Ratcliffe)和格雷格·L·塞门扎(Gregg L. Semenza)发现了细胞在氧气水平不断变化的情况下的感知和适应机制。并且发现了可以调节基因活性从而应对这一状况的分子机器。

 

       今年的诺贝尔奖获得者的开创性发现揭示了生命中最重要的适应过程的机制。他们为我们理解氧水平如何影响细胞代谢和生理功能奠定了基础。他们的发现也为抗击贫血、癌症和许多其他疾病的新策略铺平了道路。

 

       氧感机制是治疗许多疾病的核心,今年的这项发现对人体生理机能具有重要贡献,并有望对治疗贫血、癌症和其他疾病提供新的解决方案。

 

       简单来说,理解细胞在分子水平上感受氧气的基本原理,对深入理解肿瘤或是癌症的发生十分重要,另外低氧和许多疾病有关,例如心肌梗死、中风和外周血管疾病等。
2ee1c637896ad0d79b42e095b258cbb2.jpg

氧气感知工作

 

       生物体感受氧气浓度的信号识别系统是生命最基本的功能,然而学界对此却所知甚少。三位科学家阐明了人类和大多数动物细胞在分子水平上感受氧气含量的基本原理,揭示了其中重要的信号机制,为贫血、心血管疾病、黄斑退行性病变以及肿瘤等多种疾病开辟了新的临床治疗途径。

 

      氧气是众多生化代谢途径的电子受体,科学界对氧感应和氧稳态调控的研究开始于促红细胞生成素(erythropoietin, EPO)。当氧气缺乏时,肾脏分泌 EPO刺激骨髓生成新的红细胞。比如当我们在高海拔地区活动时,由于缺氧,人体的新陈代谢发生变化,开始生长出新的血管,制造新的红细胞。这几位科学家们做的正是找出这种身体反应背后的基因表达。他们发现这个反应的“开关”是一种蛋白质,叫做缺氧诱导因子 (Hypoxia-inducible factors, HIF),但其功能远不止开关那么简单。

 

      20世纪90年代初,Semenza 和 Ratcliffe 开始研究缺氧如何引起EPO的产生。他们发现了一个不仅会随着氧浓度的改变发生相应的改变,还可以控制EPO 的表达水平的转录增强因子HIF,如果将其DNA 片段插入某基因旁,则该基因会被低氧条件诱导表达。1995年,Semenza 和博士后王光纯化了 HIF-1,发现其包含两个蛋白:HIF-1α 和 HIF-1β,并证实了 HIF-1是通过红细胞和血管新生介导了机体在低氧条件下的适应性反应。

 

       随后, Semenza 和 Ratcliffe 又扩展了低氧诱导表达基因的种类。他们发现,除了 EPO, HIF-1 在哺乳动物细胞内可以结合并激活涉及代谢调节、血管新生、胚胎发育、免疫和肿瘤等过程的众多其他基因。

 

       此外,他们观察到当细胞转变为高氧条件时 HIF-1 的数量急剧下降,仅当缺氧时该因子才能能够激活靶基因。那么推动 HIF-1 破坏的原因是什么?答案来自一个意想不到的方向。

 

       希佩尔-林道综合征(Von Hippel–Lindau disease,VHL综合征)是一种罕见的常染色体显性遗传性疾病。VHL病人由于 VHL 蛋白的缺失会以多发性肿瘤为特征, 涉及脑、骨髓、视网膜、肾脏、肾上腺等多个重要器官,典型的肿瘤由不适当的新血管组成。肿瘤学家 William Kaelin 一直试图弄清楚其病理。然而,就在 HIF 被纯化的第二年, Kaelin 发现 VHL 蛋白可以通过氧依赖的蛋白水解作用负性调 HIF-1。Kaelin 和Ratcliffe 随后的研究又发现了双加氧酶在VHL 蛋白识别 HIF-1 的过程中发挥着重要的作用。

 

       HIF 控制着人体和大多数动物细胞对氧气变化的复杂又精确的反应,三位科学家一步步揭示了地球生命基石的奥秘。通过调控 HIF 通路从而达到治疗目的的研究方向正发挥着巨大的潜力,他们的工作正在并将继续造福人类。 

 

                                                                                                                                              本文摘自21世纪经济报道


标签:
029-63350399